Solution structure of recombinant hirudin and the Lys-47----Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study.

نویسندگان

  • P J Folkers
  • G M Clore
  • P C Driscoll
  • J Dodt
  • S Köhler
  • A M Gronenborn
چکیده

The solution structure of recombinant wild-type hirudin and of the putative active site mutant Lys-47----Glu has been investigated by nuclear magnetic resonance (NMR) spectroscopy at 600 MHz. The 1H NMR spectra of the two hirudin variants are assigned in a sequential manner with a combination of two-dimensional NMR techniques. Some assignments made in our previous paper [Sukumaran, D. K., Clore, G. M., Preuss, A., Zarbock, J., & Gronenborn, A. M. (1987) Biochemistry 26, 333-338] were found to be incorrect and are now corrected. Analysis of the NOE data indicates that hirudin consists of an N-terminal compact domain (residues 1-49) held together by three disulfide linkages and a disordered C-terminal tail (residues 50-65) which does not fold back on the rest of the protein. This last observation corrects conclusions drawn by us previously on hirudin extracted from its natural source, the leech Hirudo medicinalis. The improved sensitivity of the 600-MHz spectrometer relative to that of our old 500-MHz spectrometer, the availability of two variants with slightly different chemical shifts, and the additional information arising from stereospecific assignments of methylene beta-protons and methyl protons of valine have permitted the determination of the solution structure of hirudin with much greater precision than before. Structure calculations on the N-terminal domain using the hybrid distance geometry-dynamical simulated annealing method were based on 685 and 661 approximate interproton distance restraints derived from nuclear Overhauser enhancement (NOE) data for the wild-type and mutant hirudin, respectively, together with 16 distance restraints for 8 backbone hydrogen bonds identified on the basis of NOE and amide NH exchange data and 26 phi backbone and 18 chi 1 side-chain torsion angle restraints derived from NOE and three-bond coupling constant data. A total of 32 structures were computed for both the wild-type and mutant hirudin. The structure of residues 2-30 and 37-48 which form the core of the N-terminal domain is well determined in both cases with an average atomic rms difference between the individual structures and the respective mean structures of approximately 0.7 A for the backbone atoms and approximately 1 A for all atoms. As found previously, the orientation of the exposed finger of antiparallel beta-sheet (residues 31-36) with respect to the core could not be determined on the basis of the present data due to the absence of any long-range NOEs between the exposed finger and the core.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proton nuclear magnetic resonance study of the conformation of bovine anaphylatoxin C5a in solution.

The solution conformation of bovine anaphylatoxin C5a has been investigated by nuclear magnetic resonance (NMR) spectroscopy. The 1H-NMR spectrum is assigned in a sequential manner using a variety of two-dimensional NMR techniques. A qualitative interpretation of the short range nuclear Overhauser enhancement data involving the NH, C alpha H and C beta H protons suggests that C5a has four helic...

متن کامل

Three-dimensional structure of acyl carrier protein in solution determined by nuclear magnetic resonance and the combined use of dynamical simulated annealing and distance geometry.

The solution conformation of acyl carrier protein from Escherichia coli (77 residues) has been determined on the basis of 423 interproton-distance restraints and 32 hydrogen-bonding restraints derived from NMR measurements. A total of nine structures were computed using a hybrid approach combining metric matrix distance geometry and dynamic simulated annealing. The polypeptide fold is well defi...

متن کامل

Determination of the Three-Dimensional Solution Structure of the Antihypertensive and Antiviral Protein BDS-I from the Sea Anemone Anemonia Geometry-Dynamical Simulated Annealing+ sulcata: A Study Using Nuclear Magnetic Resonance and Hybrid Distance

The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 t$ backbone and 2 1 x1 side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calc...

متن کامل

High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution.

The solution structure of recombinant human thioredoxin (105 residues) has been determined by nuclear magnetic resonance (NMR) spectroscopy combined with hybrid distance geometry-dynamical simulated annealing calculations. Approximate interproton distance restraints were derived from nuclear Overhauser effect (NOE) measurements. In addition, a large number of stereospecific assignments for beta...

متن کامل

Designing and Fabrication of a New Radiofrequency Planar microcoil for mini-Nuclear Magnetic Resonance

Introduction Radiofrequency planar microcoils are used to increase the resolution of magnetic resonance images of small samples. In this study, we aimed to design and fabricate a spiral planar microcoil constructed on a double-sided printed circuit board (PCB). It has four rings with an internal diameter of 241 microns tuned and matched at 63.8 MHz. Materials and Methods To achieve the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 1989